Increased riboflavin production from activated bleaching earth by a mutant strain of Ashbya gossypii.

نویسندگان

  • Satoshi Tajima
  • Yoko Itoh
  • Takashi Sugimoto
  • Tatsuya Kato
  • Enoch Y Park
چکیده

The production of riboflavin from vegetable oil was increased using a mutant strain of Ashbya gossypii. This mutant was generated by treating the wild-type strain with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Riboflavin production was 10-fold higher in the mutant compared to the wild-type strain. The specific intracellular catalase activity after 3 d of culture was 6-fold higher in the mutant than in the wild-type strain. For the mutant, riboflavin production in the presence of 40 mM hydrogen peroxide was 16% less than that in the absence of hydrogen peroxide, whereas it was 56% less for the wild-type strain. The isocitrate lyase (ICL) activity of the mutant was 0.26 mU/mg of protein during the active riboflavin production phase, which was 2.6-fold higher than the wild-type strain. These data indicate that the mutant utilizes the carbon flux from the TCA cycle to the glyoxylate cycle more efficiently than the wild-type strain, resulting in enhanced riboflavin production. This novel mutant has the potential to be of use for industrial-scale riboflavin production from waste-activated bleaching earth (ABE), thereby transforming a useless material into a valuable bioproduct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain.

In the present study, we analyzed the central metabolic pathway of an Ashbya gossypii wild type strain and a riboflavin over-producing mutant strain developed in a previous study in order to characterize the riboflavin over-production pathway. (13)C-Metabolic flux analysis ((13)C-MFA) was carried out in both strains, and the resulting data were fit to a steady-state flux isotopomer model using ...

متن کامل

Isolation and characterization of an Ashbya gossypii mutant for improved riboflavin production

The use of the filamentous fungus, Ashbya gossypii, to improve riboflavin production at an industrial scale is described in this paper. A riboflavin overproducing strain was isolated by ultraviolet irradiation. Ten minutes after spore suspensions of A. gossypii were irradiated by ultraviolet light, a survival rate of 5.5% spores was observed, with 10% of the surviving spores giving rise to ribo...

متن کامل

Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization

BACKGROUND The industrial production of riboflavin mostly relies on the microbial fermentation of flavinogenic microorganisms and Ashbya gossypii is the main industrial producer of the vitamin. Accordingly, bioengineering strategies aimed at increasing riboflavin production in A. gossypii are highly valuable for industry. RESULTS We analyze the contribution of all the RIB genes to the product...

متن کامل

Utilization of xylose by engineered strains of Ashbya gossypii for the production of microbial oils

BACKGROUND Ashbya gossypii is a filamentous fungus that is currently exploited for the industrial production of riboflavin. The utilization of A. gossypii as a microbial biocatalyst is further supported by its ability to grow in low-cost feedstocks, inexpensive downstream processing and the availability of an ease to use molecular toolbox for genetic and genomic modifications. Consequently, A. ...

متن کامل

Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii.

Riboflavin production in the filamentous fungus Ashbya gossypii is limited by glycine, an early precursor required for purine synthesis. We report an improvement of riboflavin production in this fungus by overexpression of the glycine biosynthetic enzyme threonine aldolase. The GLY1 gene encoding the threonine aldolase of A. gossypii was isolated by heterologous complementation of the glycine-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioscience and bioengineering

دوره 108 4  شماره 

صفحات  -

تاریخ انتشار 2009